Multiparticle Effective Field and Related Methods in Micromechanics of Composite Materials

Author:

Buryachenko V. A.1

Affiliation:

1. Air Force Research Laboratory, Materials Directorate, AFRL/MLBC, Wright-Patterson AFB, OH 45433-7750

Abstract

The numerous approaches used in micromechanics can be classified into four broad categories: perturbation methods, self-consistent methods of truncation of a hierarchy, variational methods, and the model methods. In detail we will consider the self-consistent methods applied to linear elastic problems, based on some approximate and closing assumptions for truncating of an infinite system of integral equations involved and their approximate solution. We consider multiparticle effective field methods, effective medium methods, the Mori-Tanaka method, differential methods and some others. This review article tends to concentrate on methods and concepts, their possible generalizations, and connections of different methods, rather than explicit results. In the framework of a unique scheme, we undertake an attempt to analyze the wide class of statical and dynamical, local and nonlocal, linear and nonlinear micromechanical problems of composite materials with deterministic (periodic and non-periodic) and random (statistically homogeneous and inhomogeneous, so-called graded) structures, containing coated or uncoated inclusions of any shape and orientation and subjected to coupled or uncoupled, homogeneous or inhomogeneous, external fields of different physical natures. The last section contains a discussion of prospects for future work. The article includes 540 references.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3