Heat and Mass Transfer, Quality, Performance Analysis, and Modeling of Thin Layer Drying Kinetics of Banana Slices

Author:

Kushwah Anand1,Kumar Anil23,Gaur Manoj Kumar4,Pal Amit1

Affiliation:

1. Delhi Technological University Department of Mechanical Engineering, , Delhi 110042 , India

2. Delhi Technological University Department of Mechanical Engineering, , Delhi 110042 , India ;

3. Centre for Energy and Environment, Delhi Technological University , Delhi 110042 , India

4. Madhav Institute of Technology and Science Department of Mechanical Engineering, , Gwalior 474005 , India

Abstract

Abstract In this study, experimental works were carried out in three different drying methods named heat exchanger-evacuated tube-assisted drying system (HE-ETADS), greenhouse solar dryer (GHSD), and open sun drying (OSD) to compare thin-layer drying kinetics, concept of mass transfer, and quality assessment of banana slices. Initial moisture content (MC) of banana slices was obtained as 78 ± 2.0% (wb), which decreased to 23.2 ± 2.0% (wb), 25.6 ± 2.0% (wb), and 28.8 ± 2.0% (wb) in all three drying systems, respectively, in 9 h of drying time. Average drying rate was evaluated as 7.89, 7.65, and 7.25 g water/g solid h in HE-ETADS, GHSD, and OSD, respectively. Weibull model (WM) defines thin-layer drying kinetics of banana slices in all three drying processes. Maximum hardness and shrinkage factor of dried banana slices were obtained as 373.6 g and 75%, respectively, in HE-ETADS. Effective moisture diffusivity, activation energy, and mass transfer coefficient were computed as 1.11–2.48 × 10−07 m2 s−1, 30.25 kJ/mole, and 3.21–1.0 × 10−04 m/s, in HE-ETADS. Similarly, in GHSD and OSD, these factors were observed as 1.21–2.34 × 10−07 m2 s−1, 41.25 kJ/mole, 3.15–1.0 × 10−04 m/s and 1.3–2.21 × 10−07 m2 s−1, 56.89 kJ/mole, 3.01–1.0 × 10−04 m/s. Maximum total color changes were noted in OSD. Hence, HE-ETADS can potentially dry high moisture content crops effectively within a minimum drying period.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference42 articles.

1. Drying Kinetics of Banana (Musa Spp.);Omolola;Interciencia,2015

2. Modeling of Thin Layer Drying Characteristics of Banana Cv.Luvhele;Omolola;Bulg. J. Agric. Sci.,2015

3. Solar Drying of Agricultural Products;Bala;Stewart Postharvest Rev.,2013

4. Solar-Energy Drying Systems: A Review;Sharma;Renew. Sustain. Energy Rev.,2009

5. Solar Drying Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3