A Three-Dimensional Mixed Finite Element for Flexoelectricity

Author:

Deng Feng1,Deng Qian2,Shen Shengping2

Affiliation:

1. State Key Laboratory for Strength and Vibration of Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China

2. State Key Laboratory for Strength and Vibration of Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China e-mail:

Abstract

Flexoelectric effect is a universal and size-dependent electromechanical coupling between the strain gradient and electric field. The mathematical framework for flexoelectricity, which involves higher-order gradients of field quantities, is difficult to handle using traditional finite element method (FEM). Thus, it is important to develop an effective numerical method for flexoelectricity. In this paper, we develop a three-dimensional (3D) mixed finite element considering both flexoelectricity and strain gradient elasticity. To validate the developed element, we simulate the electromechanical behavior of a flexoelectric spherical shell subjected to inner pressure and compare the numerical results to analytical results. Their excellent agreement shows the reliability of the proposed FEM. The developed finite element is also used to simulate the electromechanical behavior of a nanometer-sized flexoelectric truncated pyramid. By decreasing the sample size, we observed the increase of its effective piezoelectricity. However, due to the effects of strain gradient elasticity and the influence of flexoelectricity on stiffness, the dependency of effective piezoelectricity on the sample size is not trivial. Numerical results indicate that, when the sample size is smaller than a certain value, the increase of effective piezoelectricity slows down. This finding also shows the importance of a numerical tool for the study of flexoelectric problems.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

China Postdoctoral Science Foundation

Changjiang Scholar Program of Chinese Ministry of Education

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3