The Thermodynamics of Wake Blade Interaction in Axial Flow Turbines: Combined Experimental and Computational Study

Author:

Rose Martin1,Schüpbach Peter,Mansour Michel2

Affiliation:

1. Institut für Luftfahrtantriebe Stuttgart University Stuttgart, Germany e-mail:

2. Laboratory for Energy Conversion, ETH Zürich, Switzerland

Abstract

This paper reports on insights into the detailed thermodynamics of axial turbine nozzle guide vane (NGV) wakes as they interact with the rotor blades. The evidence presented is both computational and experimental. Unsteady Reynolds-averaged Navier–Stokes (RANS) simulations are used to compare the experimental observations with theoretical predictions. Output processing with both Eulerian and Lagrangian approaches is used to track the property variation of the fluid particles. The wake is found to be hot and loses heat to the surrounding fluid. The Lagrangian output processing shows that the entropy of the wake will fall due to heat loss as it passes through the rotor and this is corroborated experimentally. The experimental vehicle is a 1.5-stage shroudless turbine with modest Mach numbers of 0.5 and high response instrumentation. The entropy reduction of the wake is determined to be about four times the average entropy rise of the whole flow across the rotor. The results show that the work done by the wake fluid on the rotor is approximately 24% lower than that of the free-stream. The apparent experimental efficiency of the wake fluid is 114% but the overall efficiency of the turbine at midheight is around 95%. It is concluded that intrafluid heat transfer has a strong impact on the loss distribution even in a nominally adiabatic turbine with moderate row exit Mach numbers of 0.5.

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. On the Necessity of Unsteady Flow in Fluid Machines;ASME J. Basic Eng.,1959

2. Wake Dispersion in Turbomachines;ASME J. Basic Eng.,1966

3. Turbomachinery Wakes: Differential Work and Mixing Loss;ASME J. Turbomach.,2000

4. On the Interpretation of Measured Profile Losses in Unsteady Wake-Turbine Blade Interaction Studies;ASME J. Turbomach.,1998

5. An Inviscid Blade-to-Blade Prediction of a Wake Generated Unsteady Flow;ASME J. Eng. Gas Turbines Power,1985

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3