Affiliation:
1. EC2-Modélisation, Villeurbanne, France
2. EDF SEPTEN, Villeurbanne, France
Abstract
In order to obtain the residual stress field resulting from the welding process, numerical simulations of multi-pass welding have demonstrated their efficiency and have become an interesting alternative to practical measurements. However, in the context of engineering studies, it remains a difficult task to compute residual stresses for a very high number of passes with reasonable computation times. In this paper, a time-saving method is proposed to simulate the welding process, ensuring an accurate reproduction of the residual stress field with drastically reduced computation times. The method consists in including in the simulation only the last deposited pass, or a reduced number of appropriately selected passes. For a given material and a given heat input, the choice of remaining passes depends on the geometrical parameters. The method is applied to various geometries of austenitic pipes girth welds, which have been widely studied in the literature and standards. The results, confronted to multipass simulations including all the passes, and to literature results, are very satisfactory. Quasi-identical residual stress fields are computed in both cases with computation times divided by a factor comprised between 7 up to 12. Further computations are in progress on other configurations than girth-weld pipes, and more complex 3D geometry like J weld of bottom head nozzles.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献