Performance Study and Energy Saving Process Analysis of Hybrid Absorption-Compression Refrigeration Cycles

Author:

Zhang Na1,Lior Noam2,Han Wei1

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China e-mail:

2. Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315 e-mail:

Abstract

In an attempt to improve the performance of hybrid absorption and mechanical vapor compression refrigeration systems and to determine the fundamental reasons for such improvements, two configurations of the hybrid refrigeration cycle with a booster compressor at different positions of the cycle (between the evaporation and the absorber, or between the generator and the condenser) are simulated and analyzed. The interrelation between the two subcycles and the hybridization principle have been explored and clarified. An NH3/H2O-based hybrid cycle is the basis of this simulation. It was found that (1) the hybrid cycle performance is mainly governed by the interaction between its two subcycles of mechanical compression and thermal compression and their respective energy efficiencies, and (2) the hybrid cycle primary energy-based coefficient of performance (COP) was higher by up to 15% (without internal heat recuperation) as compared with the nonhybrid absorption cycle, (3) in comparison with the nonhybrid absorption and vapor compression cycles working in the same temperature regions, the more efficient use of low-temperature heat by cascade utilization of the two energy inputs (heat rate and mechanical power) with different energy quality, and the enhanced refrigeration ability of low-temperature heat are the basic reasons for the hybrid cycle performance improvement and significant energy saving, (4) the hybrid cycle achieves an exergy efficiency of 36.5%, which is 27% higher than that of the absorption cycle, and 4.5% higher than the vapor compression cycle, achieving a thermal-driving exergy efficiency of 37.5% and mechanical work saving ratio up to 64%.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3