Optimizing Energy Consumption in a Decentralized Manufacturing System

Author:

Ilsen Rebecca1,Meissner Hermann1,Aurich Jan C.1

Affiliation:

1. Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, Kaiserslautern D-67663, Germany e-mail:

Abstract

The deployment of modern information and communication technologies (ICT) within manufacturing systems leads to the creation of so-called cyber-physical production systems that consist of intelligent interconnected production facilities. One of the expected features of cyber-physical production systems is found to be the capability of self-organization and decentralized process planning in manufacturing. The functionality as well as the benefit of such self-organization concepts is yet to be proved. In this paper, the implementation of a virtual test field for the simulation of manufacturing systems based on a multi-agent system modeling concept is presented and used to evaluate a concept of decentralized process planning. Thereby, special focus is laid on the impact on energy consumption. The simulation results show the potential for energy reduction in manufacturing by a decentralized process-planning concept and yields hints for further development of such concepts.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference21 articles.

1. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Final Report of the Industrie 4.0 Working Group,2013

2. Engineering Cyber-Physical Systems: Challenges and Foundations,2013

3. Stochastic Energy Opportunity Windows in Advanced Manufacturing Systems,2015

4. Agent-Based Distributed Manufacturing Control: A State-of-the-Art Survey;Eng. Appl. Artif. Intell.,2009

5. The Fractal Company

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3