Affiliation:
1. Ecole de Technologie Superieure, 1100 Notre-Dame Ouest, Montreal, PQ, H3C 1K3, Canada
Abstract
Despite the fact that multipass shell-and-tube heat exchangers operating at high temperature are subject to frequent problems related to flange sealing, there is neither detailed explanations for the reasons of the failures nor an adequate solution to this problem. Specific geometry of multipass heat exchangers and the temperature difference between the inlet and the outlet fluids is responsible for the existence of a thermal circumferential gradient at the shell-to-channel bolted joint. However, existing flange design methods do not address nonaxisymmetrical temperature loading of the flanged joint assembly. The circumferential thermal gradient, as the cause of frequent failures to seal the flanged joints, is ignored. This paper outlines the analytical modeling of a flanged joint with a tube sheet of a multipass heat exchanger subjected to a nonaxisymmetrical thermal loading. A shell-and-tube heat exchanger of 51 in. diameter with cocurrent flow was used for analysis. The main steps of the theoretical analysis used for the determination of the circumferential temperature profiles and the thermal expansion displacements and distortions of the bolted joint components are given. The results from the proposed analytical model are compared with those obtained from finite element models.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Reference25 articles.
1. Use Ultrasonic Extensometer to Determine the Variations in the Assembly Bolt Loads Problem Industrial Flange;Winter;Exp. Tech.
2. Gasket Selection Flowchart;Winter
3. Flange Thermal Parameter Study and Gasket Selection;Winter
4. The Effect of Gasket Creep Relaxation on the Leakage Tightness of Bolted Flanged Joints;Bouzid;ASME J. Pressure Vessel Technol.
5. An Accurate Method of Evaluating Relaxation in Bolted Flanged Connections;Bouzid;ASME J. Pressure Vessel Technol.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献