Buckling and Vibration of Orthotropic Nonhomogeneous Rectangular Plates With Bilinear Thickness Variation

Author:

Kumar Yajuvindra1,Lal R.1

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247 667, India

Abstract

An analysis and numerical results are presented for buckling and transverse vibration of orthotropic nonhomogeneous rectangular plates of variable thickness using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method on the basis of classical plate theory when uniformly distributed in-plane loading is acting at two opposite edges clamped/simply supported. The Gram–Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of various plate parameters such as nonhomogeneity parameters, aspect ratio together with thickness variation, and in-plane load on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported, and free edges correct to four decimal places. Three dimensional mode shapes for a specified plate for all the four boundary conditions have been plotted. By allowing the frequency to approach zero, the critical buckling loads in compression for various values of plate parameters have been computed correct to six significant digits. A comparison of results with those available in the literature has been presented.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3