Identification of a Subsystem Located in The Complex Dynamical Systems Subjected to Random Loads

Author:

Jamroziak Krzysztof1,Bocian Miroslaw2,Kulisiewicz Maciej3

Affiliation:

1. Faculty of Management, General Tadeusz Kosciuszko Military Academy of Land Forces, Czajkowskiego 109, Wroclaw 51-150, Poland e-mail:

2. Department of Mechanics, Materials Science and Engineering, Wroclaw University of Technology, Smoluchowskiego 25, Wroclaw 50-370, Poland e-mail:

3. Faculty of Technology and Engineering, Wroclaw University of Technology, Smoluchowskiego 25, Wroclaw 50-370, Poland e-mail:

Abstract

The paper presents a new way to determine some dynamical properties of materials modeled by the so-called degenerate system. The system is an element (subsystem) of any complex multidegree-of-freedom system. This subsystem follows from assumption of standard rheological model of stress–strain law of the materials. It is assumed that on the complex system act a set of random excitation forces. For this coincidence, a so-called energy balance equation was developed and was used to create a suitable identification method. The equations were derived for any differentiable function of elasticity. The stationary random process of the system response was assumed in the whole algorithm. As it was proved, in this case, instead of calculating appropriate fields of the hysteresis loop of suitable signals, an application of average values of the input and output signals and their proper combinations can be used. It is assumed that the elastic damping interaction force in the complex dynamical subsystem is described by the function F(x,x˙), in which x is a deformation of the identified degenerated element and denotes a relative displacement between some appropriate neighboring masses of the system. Some numerical examples of the application are shown.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3