Optical Tracking of a Tactile Probe for the Reverse Engineering of Industrial Impellers

Author:

Barone Sandro1,Paoli Alessandro1,Razionale Armando V.1

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, n.1, Pisa 56126, Italy e-mail:

Abstract

Different sensor technologies are available for dimensional metrology and reverse engineering processes. Tactile systems, optical sensors, and computed tomography (CT) are being used to an increasing extent in various industrial contexts. However, each technique has its own peculiarities, which may limit its usability in demanding applications. The measurement of complex shapes, such as those including hidden and twisted geometries, could be better afforded by multisensor systems combining the advantages of two or more data acquisition technologies. In this paper, a fully automatic multisensor methodology has been developed with the aim at performing accurate and reliable measurements of both external and internal geometries of industrial components. The methodology is based on tracking a customized hand-held tactile probe by a passive stereo vision system. The imaging system automatically tracks the probe by means of photogrammetric measurements of markers distributed over a plate rigidly assembled to the tactile frame. Moreover, the passive stereo system is activated with a structured light projector in order to provide full-field scanning data, which integrate the point-by-point measurements. The use of the same stereo vision system for both tactile probe tracking and structured light scanning allows the two different sensors to express measurement data in the same reference system, thus preventing inaccuracies due to misalignment errors occurring in the registration phase. The tactile methodology has been validated by measuring primitive shapes. Moreover, the effectiveness of the integration between tactile probing and optical scanning has been experienced by reconstructing twisted and internal shapes of industrial impellers.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference45 articles.

1. Reverse Engineering of Geometric Models—An Introduction;Comput.-Aided Des.,1997

2. The 3D Model Acquisition Pipeline;Comput. Graphics Forum,2002

3. Reverse Engineering

4. Reverse Engineering Applications for Recovery of Broken or Worn Parts and Re-Manufacturing: Three Case Studies;Adv. Eng. Software,2009

5. Standard Conforming Involute Gear Metrology Using an Articulated Arm Coordinate Measuring System;Meas. Sci. Technol.,2012

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3