Developing Pulsatile Flow in a Deployed Coronary Stent

Author:

Rajamohan Divakar1,Banerjee Rupak K.2,Back Lloyd H.3,Ibrahim Ashraf A.1,Jog Milind A.1

Affiliation:

1. Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221

2. Department of Mechanical Engineering, and Department of Biomedical Engineering, University of Cincinnati, 688 Rhodes Hall, PO Box 210072, Cincinnati, OH 45221

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract

A major consequence of stent implantation is restenosis that occurs due to neointimal formation. This patho-physiologic process of tissue growth may not be completely eliminated. Recent evidence suggests that there are several factors such as geometry and size of vessel, and stent design that alter hemodynamic parameters, including local wall shear stress distributions, all of which influence the restenosis process. The present three-dimensional analysis of developing pulsatile flow in a deployed coronary stent quantifies hemodynamic parameters and illustrates the changes in local wall shear stress distributions and their impact on restenosis. The present model evaluates the effect of entrance flow, where the stent is placed at the entrance region of a branched coronary artery. Stent geometry showed a complex three-dimensional variation of wall shear stress distributions within the stented region. Higher order of magnitude of wall shear stress of 530dyn∕cm2 is observed on the surface of cross-link intersections at the entrance of the stent. A low positive wall shear stress of 10dyn∕cm2 and a negative wall shear stress of −10dyn∕cm2 are seen at the immediate upstream and downstream regions of strut intersections, respectively. Modified oscillatory shear index is calculated which showed persistent recirculation at the downstream region of each strut intersection. The portions of the vessel where there is low and negative wall shear stress may represent locations of thrombus formation and platelet accumulation. The present results indicate that the immediate downstream regions of strut intersections are areas highly susceptible to restenosis, whereas a high shear stress at the strut intersection may cause platelet activation and free emboli formation.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference28 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3