A 3-D Printed Optically Clear Rigid Diseased Carotid Bifurcation Arterial Mock Vessel Model for Particle Image Velocimetry Analysis in Pulsatile Flow

Author:

Stanley Nicholas1,Ciero Ashley2,Timms William3,Hewlin Rodward L.4

Affiliation:

1. University of North Carolina at Charlotte Department of Engineering Technology and Construction Management (ETCM), , 9201 University City Blvd, Charlotte, NC 28214

2. University of North Carolina at Charlotte Department of Engineering Technology and Construction Management (ETCM), Applied Energy and Electromechanical Engineering (AEES), , 9201 University City Blvd, Charlotte, NC 28214

3. University of North Carolina at Charlotte Department of Mechanical Engineering and Engineering Science (MEES), , 9201 University City Blvd, Charlotte, NC 28214

4. University of North Carolina at Charlotte Department of Engineering Technology and Construction Management (ETCM), Center for Biomedical Engineering and Science (CBES), , 9201 University City Blvd, Charlotte, NC 28214

Abstract

Abstract In recent years, blood flow analyses of diseased arterial mock vessels using particle image velocimetry (PIV) have been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of this paper is to introduce a novel approach for producing optically clear 3-D printed rigid anatomical arterial vessel models that are suitable for PIV analysis using a common 3-D inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-deg print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-deg print orientation increases the need for post-processing due to an increased amount of printed support material. During post-processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high-resolution flow images. The mock arterial vessel model produced in this work is a 3-D printed diseased carotid bifurcation artery developed from CTA scan data. A PIV analysis was conducted on the developed mock arterial vessel model installed in a complex transient flow loop to assess the flow profiles within the model and the clarity of the model. A computational fluid dynamics (CFD) simulation was conducted on the same carotid bifurcation arterial geometry, and the results were used as a benchmark comparison for PIV results. The results obtained in this work show excellent promise for using the developed approach for developing 3-D printed anatomical vessel models for experimental PIV analyses. The fabrication methodology of the clear anatomical models, PIV results, and CFD results is described in detail.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3