Validation and Assessment of the Continuous Random Walk Model for Particle Deposition in Gas Turbine Engines

Author:

Forsyth Peter1,Gillespie David R. H.1,McGilvray Matthew1,Galoul Vincent2

Affiliation:

1. University of Oxford, Osney Mead, UK

2. Rolls-Royce PLC, Derby, UK

Abstract

Threats to engine integrity and life from deposition of environmental particulates that can reach the turbine cooling systems (i.e. <10 micron) have become increasing important within the aero-engine industry, with an increase of flight paths crossing sandy, tropical storm-infested, or polluted airspaces. This has led to studies in the turbomachinery community investigating environmental particulate deposition, largely applying the Discrete Random Walk (DRW) model in CFD simulations of air paths. However, this model was conceived to model droplet dispersion in bulk flow regimes, and therefore has fundamental limitations for deposition studies. One significant limitation is an insensitivity to particle size in the turbulent deposition size regime, where deposition is strongly linked to particle size. This is highlighted within this study through comparisons to published experimental data. Progress made within the wider particulate deposition community has recently led to the development and application of the Continuous Random Walk (CRW) model. This new model provides significantly improved predictions of particle deposition seen experimentally in comparison to the DRW for low temperature pipe flow experiments. However, the CRW model is not without its difficulties. This paper highlights the sensitivities within the CRW model and actions taken to alleviate them where possible. For validation of the model at gas turbine conditions, it should be assessed at engine-representative conditions. These include high-temperature and swirling flows, with thermophoretic and wall-roughness effects. Thermophoresis is a particle force experienced in the negative direction of the temperature gradient, and can strongly effect deposition efficiency from certain flows. Previous validation of the model has centred on low temperatures and pipe flow conditions. Presented here is the validation process which is currently being undertaken to assess the model at gas turbine-relevant conditions. Discussion centres on the underlying principles of the model, how to apply this model appropriately to gas turbine flows and initial assessment for flows seen in secondary air systems. Verification of model assumptions is undertaken, including demonstrating that the effect of boundary layer modelling of anisotropic turbulence is shown to be Reynolds-independent. The integration time step for numerical solution of the non-dimensional Langevin equation is redefined, showing improvement against existing definitions for the available low temperature pipe flow data. The grid dependence of particle deposition in numerical simulations is presented and shown to be more significant for particle conditions in the diffusional deposition regime. Finally, the model is applied to an engine-representative geometry to demonstrate the improvement in sensitivity to particle size that the CRW offers over the DRW for wall-bounded flows.

Publisher

American Society of Mechanical Engineers

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3