The Response of Human Aortic Endothelial Cells in a Stenotic Hemodynamic Environment: Effect of Duration, Magnitude, and Spatial Gradients in Wall Shear Stress

Author:

Rouleau Leonie1,Rossi Joanna1,Leask Richard L.1

Affiliation:

1. Department of Chemical Engineering, McGill University, 3610 University, Montreal, QC Canada, H3A 2B2; Montreal Heart Institute, 5000, rue Bélanger, Montreal, QC, Canada, H1T 1C8

Abstract

Inflammation plays a key role in the development and stability of coronary plaques. Endothelial cells alter their expression in response to wall shear stress (WSS). Straight/tubular and asymmetric stenosis models were designed to study the localized expression of atheroprone molecules and inflammatory markers due to the presence of the spatial wall shear stress gradients created by an eccentric plaque. The effects of steady wall shear stress duration (0–24 h) and magnitude (4.5–18 dynes/cm2) were analyzed in human abdominal aortic endothelial cells through quantitative real-time polymerase chain reaction (PCR) and immunofluorescence analysis in straight/tubular models. Regional expression was assessed by immunofluorescence and confocal microscopy in stenosis models. Under steady fully developed flow, endothelial cells exhibited a sustained increase in levels of atheroprotective genes with WSS duration and magnitude. The local response in the stenosis model showed that expression of endothelial nitric oxide synthase and Kruppel-like factor 2 is magnitude rather than gradient dependent. A WSS magnitude dependent transient increase in translocation of transcription factor nuclear factor κB was observed. Intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin exhibited a sustained increase in protein expression with time. The mRNA levels of these molecules were transiently upregulated and this was followed by a decrease in expression to levels lower than static controls. Regionally, increased inflammatory marker expression was observed in regions of WSS gradients both proximal and distal to the stenosis when compared with the uniform flow regions, whereas the atheroprotective markers were expressed to a greater extent in regions of elevated WSS magnitudes. The results from the straight/tubular model cannot explain the regional variation seen in the stenosis models. This may help explain the localization of inflammatory cells at the shoulders of plaques in vivo.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3