Underwater Acoustic Manipulation Using Solid Metamaterials With Broadband Anisotropic Density

Author:

Dong Jianzhu1,Zhao Yuchen1,Cheng Yong1,Zhou Xiaoming2

Affiliation:

1. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China e-mail:

Abstract

A new type of all-solid metamaterial model with anisotropic density and fluid-like elasticity is proposed for controlling acoustic propagation in an underwater environment. The model consists of a regular hexagonal lattice as the host that defines the overall isotropic stiffness, in which all lattice beams have been sharpened at both ends to significantly diminish the shear resistance. The inclusion structure, which involves epoxy, rubber, and lead material constituents, is designed to attain a large density–anisotropy ratio in the broad frequency range. The wave-control capability of metamaterials is evaluated in terms of underwater acoustic stretching, shifting, and ground cloaking, which are generated by the transformation acoustic method. The decoupling design method was developed for the metamaterial microstructure using band-structure, effective-medium, and modal-field analyses. The acoustic performance of these metamaterial devices was finally verified with full-wave numerical simulations. Our study provides new insight into broadband underwater acoustic manipulation by all-solid anisotropic-density metamaterials.

Funder

Ministry of Education of the People's Republic of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3