Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet

Author:

Stevens J.1,Webb B. W.1

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

Abstract

The purpose of this investigation was to characterize local heat transfer coefficients for round, single-phase free liquid jets impinging normally against a flat uniform heat flux surface. The problem parameters investigated were jet Reynolds number Re, nozzle-to-plate spacing z, and jet diameter d. A region of near-constant Nusselt number was observed for the region bounded by 0≤r/d≤0.75, where r is the radial distance from the impingement point. The local Nusselt number profiles exhibited a sharp drop for r/d > 0.75, followed by an inflection and a slower decrease there-after. Increasing the nozzle-to-plate spacing generally decreased the heat transfer slightly. The local Nusselt number characteristics were found to be dependent on nozzle diameter. This was explained by the influence of the free-stream velocity gradient on local heat transfer, as predicted in the classical analysis of infinite jet stagnation flow and heat transfer. Correlations for local and average Nusselt numbers reveal an approximate Nusselt number dependence on Re1/3.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigation of liquid jet impingement heat transfer at superhydrophobic surfaces;International Journal of Heat and Mass Transfer;2024-05

2. Cooling enhancement for engine parts using jet impingement;Frontiers in Mechanical Engineering;2024-01-18

3. Model for core catcher ablation and cavity shape in the film regime;Nuclear Engineering and Design;2023-12

4. Flow and heat transfer characteristics of submerged impinging air-water jets;International Journal of Thermal Sciences;2023-11

5. Jet Impingement Heat Sinks With Application Toward Power Electronics Cooling: A Review;IEEE Transactions on Components, Packaging and Manufacturing Technology;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3