Regional Heat Transfer in Two-Pass and Three-Pass Passages With 180-deg Sharp Turns

Author:

Chyu M. K.1

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

The heat transfer distributions for flow passing through two-pass (one-turn) and three-pass (two-turn) passages with 180-deg sharp turns are studied by using the analogous naphthalene mass transfer technique. Both passages have square cross section and length-to-height ratio of 8. The passage surface, including top wall, side walls, and partition walls, is divided into 26 segments for the two-pass passage and 40 segments for the three-pass passage. Mass transfer results are presented for each segment along with regional and overall averages. The very nonuniform mass transfer coefficients measured around a sharp 180-deg turn exhibit the effects of flow separation, reattachment, and impingement, in addition to secondary flows. Results for the three-pass passage indicate that heat transfer characteristics around the second turn are virtually the same as those around the first turn. This may imply that, in a multiple-pass passage, heat transfer at the first turn has already reached the thermally developed (periodic) condition. Over the entire two-pass passage, the heat transfer enhancement induced by the single-turn is about 45 to 65 percent of the fully developed values in a straight channel. Such a heat transfer enhancement decreases with an increase in Reynolds number. In addition, overall heat transfer of the three-pass passage is approximately 15 percent higher than that of the two-pass one. This 15 percent increase appears to be Reynolds number independent. The pressure loss induced by the sharp turns is found to be very significant. Within the present testing range, the pressure loss coefficient for both passages is Reynolds number dependent.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3