Machine Learning Versus Empirical Models to Predict Daily Global Solar Irradiation in an Average Year: Homogeneous Parallel Ensembles Prevailed

Author:

De Souza Keith1

Affiliation:

1. Center for Optoelectronics Research , Diego Martin , Trinidad and Tobago

Abstract

Abstract Accurate predictive daily global horizontal irradiation models are essential for diverse solar energy applications. Their long-term performances can be assessed using average years. This study scrutinized 70 machine learning and 44 empirical models using two disjoint 5-year average daily training and validation datasets, each comprising 365 records and ten features. The features included day number, minimum and maximum air temperature, air temperature amplitude, theoretical and observed sunshine hours, theoretical extraterrestrial horizontal irradiation, relative sunshine, cloud cover, and relative humidity. Fourteen machine learning algorithms, namely, multiple linear regression, ridge regression, Lasso regression, elastic net regression, Huber regression, k-nearest neighbors, decision tree, support vector machine, multilayer perceptron, extreme learning machine, generalized regression neural network, extreme gradient boosting, gradient boosting machine, and light gradient boosting machine were trained, validated, and instantiated as base learners in four strategically designed homogeneous parallel ensembles—variants of pasting, random subspace, bagging, and random patches—which also were scrutinized, producing 70 models. Specific hyperparameters from the algorithms were optimized. Validation showed that at least two ensembles outperformed its individual model. Huber-subspace ranked first with a root mean square error of 1.495 MJ/m2/day. The multilayer perceptron was most robust to the random perturbations of the ensembles which extrapolate to good tolerance to ground-truth data noise. The best empirical model returned a validation root mean square error of 1.595 MJ/m2/day but was outperformed by 93% of the machine learning models with the homogeneous parallel ensembles producing superior predictive accuracies.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3