An Analysis of a Crack in Weld by Using Near-Field as Well as Far-Field Crack Parameters

Author:

Nakagaki M.1,Marschall C. W.2,Brust F. W.2

Affiliation:

1. Department of Mechanical System Engineering, Kyushu Institute of Technology, Iizuka-City, Japan

2. Battelle, Columbus Division, Columbus, OH 43201

Abstract

A study of ductile crack growth characteristics in stainless steel welds is reported in this paper. A hybrid-type analysis of combined experimental, analytical, and predictive procedures on the subject is addressed. The study focuses on the effects of a stress/strain interaction phenomenon occurring between the crack tip and the weld-base material interface. Clear dependence of the crack initiation fracture characteristics on the weld size relative to the specimen size was found. Also, fracture toughness of a tungsten inert gas weld is shown to be comparable to that for the base stainless steel metal, whereas that of a submerged arc weld is shown to be significantly lower than the base metal. Because of the stress/strain nonproportionality associated with a local unloading due to crack growth in a ductile material, the use of a crack-tip parameter such as ΔTP* or Jˆ-integral was emphasized. On the other hand, prediction of a crack instability was attempted using a less rigorous J-estimation scheme procedure.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3