Failure Surfaces for Finitely Strained Two-Phase Periodic Solids Under General In-Plane Loading

Author:

Triantafyllidis N.1,Nestorović M. D.1,Schraad M. W.2

Affiliation:

1. Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140

2. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

For ductile solids with periodic microstructures (e.g., honeycombs, fiber-reinforced composites, cellular solids) which are loaded primarily in compression, their ultimate failure is related to the onset of a buckling mode. Consequently, for periodic solids of infinite extent, one can define as the onset of failure the first occurrence of a bifurcation in the fundamental solution, for which all cells deform identically. By following all possible loading paths in strain or stress space, one can construct onset-of-failure surfaces for finitely strained, rate-independent solids with arbitrary microstructures. The calculations required are based on a Bloch wave analysis on the deformed unit cell. The presentation of the general theory is followed by the description of a numerical algorithm which reduces the size of stability matrices by an order of magnitude, thus improving the computational efficiency for the case of continuum unit cells. The theory is subsequently applied to porous and particle-reinforced hyperelastic solids with circular inclusions of variable stiffness. The corresponding failure surfaces in strain-space, the wavelength of the instabilities, and their dependence on micro-geometry and macroscopic loading conditions are presented and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3