Weld Pool Impedance for Pool Geometry Measurement: Stationary and Nonstationary Pools

Author:

Tam A. S.1,Hardt D. E.1

Affiliation:

1. Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

The most elusive quantity in describing weld pool geometry is the depth, since it cannot be directly observed; yet it is the most important quantity to be regulated during welding. This paper addresses the problem of depth feedback measurement for full penetration welds, where the objective is to completely melt the cross section. It has been demonstrated that the existence and size of a full penetration weld can be detected by measuring the mechanical impedance of the resulting weld pool. Previous work in modeling this phenomenon has been limited to stationary welds, and experiments have either used impractical measurement methods or have not provided conclusive results. In this paper, a model of pool motion is developed that applies to both the stationary and moving weld case, and the pool motion is detected directly from changes in the arc voltage. A description of pool motion is derived from an elliptical membrane model, and the total system transfer function, including arc and pool dynamics is derived. A series of experiments demonstrates that the pool motion can indeed be detected for the moving pool case. However, the exact determination of pool oscillation frequencies requires knowledge of the pool perimeter geometry, since the elliptical system has many closely spaced eigenvalues arising from both symmetric and antisymmetric mode shapes.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3