A Complementary Sensor Approach to Reverse Engineering

Author:

Bradley C.1,Chan V.1

Affiliation:

1. Dept. of Mechanical Engineering, University of Victoria, Canada

Abstract

A complementary sensor technique for reverse engineering objects that are represented by a three-dimensional (3D) cloud data set is reported. The research focuses on objects whose surface form is manifest as a set of distinct free-form surface patches, each of which is enclosed by a boundary. The method incorporates three stages: (1) laser scanner-based digitization of all the free-form surface patches, (2) touch probe-based digitization of the surface patch boundaries, and (3) modeling of both data sets to create a complete B-spline curve and surface representation of the object. The patch boundary data, defined by the touch probe, is employed to segment the free-form surface data into the constituent patches. Furthermore, the boundary data is incorporated within a B-spline surface fitting process to constrain the boundaries. The two sensors functionally complement each other; the range sensor provides the required dense resolution of 3D points on the free-form surfaces whereas the touch probe accurately defines the patch boundaries. The method is ideal for objects comprised of both functional engineering features, e.g. bearing holes or precise mounting locators, and aesthetic features, such as hand grips or part covers. The touch probe is also ideal for digitizing boundaries where occlusion prevents the use of an optical digitizer. The laser-based sensor has an accuracy specification of 50 microns (over a 40-mm depth of field) whereas the touch probe is accurate to 4 microns over a 25-mm measurement length. An example part is modeled that has multiple free-form patches (defining the part’s outer cover) that require a large cloud data set for complete coverage. The corresponding patch boundaries accurately define the location of critical part mounting locations that require the touch probe’s precision.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3