Thermohydraulics of Laminar Flow Through Rectangular and Square Ducts With Axial Corrugation Roughness and Twisted Tapes With Oblique Teeth

Author:

Saha Sujoy Kumar1

Affiliation:

1. ENEA Casaccia Research Centre, Institute of Thermal Fluid Dynamics, Office Building F-20, Via Anguillarese 301, 00123 S. M. Galeria, Rome, Italy

Abstract

The heat transfer and the pressure drop characteristics of laminar flow of viscous oil (175<Pr<538) through rectangular and square ducts with combined internal axial corrugations on all the surfaces of the ducts and with twisted-tape inserts with and without oblique teeth have been studied experimentally. The axial corrugations in combination with both twisted tapes with and without oblique teeth have been found to perform better than either axial corrugations or twisted-tape inserts acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, corrugation angle, corrugation pitch, twist ratio, space ratio, length, tooth horizontal length and tooth angle of the twisted tapes, Reynolds number, and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that based on constant pumping power, up to 45% heat duty increase occurs for the combined axial corrugation and twisted-tape insert case compared with the individual axial corrugation and twisted-tape insert cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 30% for the combined enhancement geometry than the individual enhancement geometries.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference30 articles.

1. The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchanger;Focke;Int. J. Heat Mass Transfer

2. Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results;Stasiek;Int. J. Heat Mass Transfer

3. Flow Visualization in Parallel Plate Ducts With Corrugated Walls;Focke;J. Fluid Dyn.

4. A Comparative Analysis of Heat Transfer and Pressure Drop in Plate Heat Exchangers;Abdel-Kariem

5. Augmentation Techniques for Low Reynolds Number in-Tube Flow;Bergles

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3