Numerical Predictions of Hydrogen-Air Rectangular Channel Flows Augmented by Catalytic Surface Reactions

Author:

Amano Ryoichi S.,Abou-Ellail Mohsen M.1,Kaseb S.2

Affiliation:

1. Mechanical Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53201

2. Mechanical Engineering Department, Cairo University, Cairo 12613, Egypt

Abstract

Catalytic combustion of hydrogen-air boundary layers involves the adsorption of hydrogen and oxygen into a platinum-coated surface, chemical reactions of the adsorbed species, and the desorption of the resulting products. Re-adsorption of some produced gases is also possible. This paper presents numerical computations of laminar momentum transfer, heat transfer, and chemical reactions in rectangular channel flows of hydrogen-air mixtures. Chemical reactions are included in the gas phase as well as on the solid platinum surfaces. In the gas phase, eight species are involved in 26 elementary reactions. On the platinum hot surfaces, additional surface species are included, which are involved in 16 additional surface chemical reactions. The platinum surface temperature distribution is prespecified, while the properties of the reacting flow are computed. The results show very good agreement with the measured data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3