Experimental Simulation of Fish-Inspired Unsteady Vortex Dynamics on a Rigid Cylinder

Author:

Bandyopadhyay Promode R.1,Castano John M.1,Nedderman William H.1,Donnelly Martin J.2

Affiliation:

1. Naval Undersea Warfare Center, Newport, RI 02841

2. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

The unsteady hydrodynamics of the tail flapping and head oscillation of a fish, and their phased interaction, are considered in a laboratory simulation. Two experiments are described where the motion of a pair of rigid flapping foils in the tail and the swaying of the forebody are simulated on a rigid cylinder. Two modes of tail flapping are considered: waving and clapping. Waving is similar to the motion of the caudal fin of a fish. The clapping motion of wings is a common mechanism for the production of lift and thrust in the insect world, particularly in butterflies and moths. Measurements carried out include dynamic forces and moments on the entire cylinder-control surface model, phase-matched laser Doppler velocimetry maps of vorticity-velocity vectors in the axial and cross-stream planes of the near-wake, as well as dye flow visualization. The mechanism of flapping foil propulsion and maneuvering is much richer than reported before. They can be classified as natural or forced. This work is of the latter type where discrete vortices are forced to form at the trailing edge of flapping foils via salient edge separation. The transverse wake vortices that are shed, follow a path that is wider than that given by the tangents to the flapping foils. The unsteady flap-tip axial vortex decays rapidly. Significant higher order effects appear when Strouhal number (St) of tail flapping foils is above 0.15. Efficiency, defined as the ratio of output power of the flapping foils to the power input to the actuators, reaches a peak below the St range of 0.25–0.35. Understanding of two-dimensional flapping foils and fish reaching their peak efficiency in that range is clarified. Strouhal number of tail flapping does emerge as an important parameter governing the production of net axial force and efficiency, although it is by no means the only one. The importance of another Strouhal number based on body length and its natural frequency is also indicated. The relationship between body length and tail flapping frequency is shown to be present in dolphin swimming data. The implication is that, for aquatic animals, the longitudinal structural modes of the body and the head/tail vortex shedding process are coupled. The phase variation of a simulated and minute head swaying, can modulate axial thrust produced by the tail motion, within a narrow range of ±5 percent. The general conclusion is that, the mechanism of discrete and deterministic vortex shedding from oscillating control surfaces has the property of large amplitude unsteady forcing and an exquisite phase dependence, which makes it inherently amenable to active control for precision maneuvering. [S0098-2202(00)00102-4]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3