Solar Radiation Model Applied to a Low Temperature Evacuated Tubes Solar Collector

Author:

López-Núñez Oscar A.1,Arturo Alfaro-Ayala J.1,Ramírez-Minguela J. J.1,Nicolás Flores-Balderas J.1,Belman-Flores J. M.2

Affiliation:

1. Department of Chemical Engineering, University of Guanajuato, Guanajuato 36050, México e-mail:

2. Department of Mechanical Engineering, University of Guanajuato, Salamanca 36885, México e-mail:

Abstract

A solar radiation model is applied to a low temperature water-in-glass evacuated tubes solar collector to predict its performance via computational fluid dynamics (CFD) numerical simulations. This approach allows obtaining the transmitted, reflected, and absorbed solar radiation flux and the solar heat flux on the surface of the evacuated tubes according to the geographical location, the date, and the hour of a day. Different environmental and operational conditions were used to obtain the outlet temperature of the solar collector; these results were validated against four experimental tests based on an Official Mexican Standard resulting in relative errors between 0.8% and 2.6%. Once the model is validated, two cases for the solar collector were studied: (i) different mass flow rates under a constant solar radiation and (ii) different solar radiation (due to the hour of the day) under a constant mass flow rate to predict its performance and efficiency. For the first case, it was found that the outlet temperature decreases as the mass flow rate increases reaching a steady value for a mass flow rate of 0.1 kg/s (6 l/min), while for the second case, the results showed a corresponding outlet temperature behavior to the solar radiation intensity reaching to a maximum temperature of 36.5 °C at 14:00 h. The CFD numerical study using a solar radiation model is more realistic than the previous reported works leading to overcome a gap in the knowledge of the low temperature evacuated tube solar collectors.

Funder

Secretaría de Educación Pública

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3