Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model Using a Modified Iterative Ensemble Smoother

Author:

Fan Zhaoqi1,Yang Daoyong2,Chai Di3,Li Xiaoli4

Affiliation:

1. Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045; Department of Petroleum Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada

2. Department of Petroleum Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada

3. Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045

4. Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045 e-mail:

Abstract

The iterative ensemble smoother (IES) algorithm has been extensively used to implicitly and inversely determine model parameters by assimilating measured/reference production profiles. The performance of the IES algorithms is usually challenged due to the simultaneous assimilation of all production data and the multiple iterations required for handling the inherent nonlinearity between production profiles and model parameters. In this paper, a modified IES algorithm has been proposed and validated to improve the efficiency and accuracy of the IES algorithm with the standard test model (i.e., PUNQ-S3 model). More specifically, a recursive approach is utilized to optimize the screening process of damping factor for improving the efficiency of the IES algorithm without compromising of history matching performance because an inappropriate damping factor potentially yields more iterations and significantly increased computational expenses. In addition, a normalization method is proposed to revamp the sensitivity matrix by minimizing the data heterogeneity associated with the model parameter matrix and production data matrix in updating processes of the IES algorithm. The coefficients of relative permeability and capillary pressure are included in the model parameter matrix that is to be iteratively estimated by assimilating the reference production data (i.e., well bottomhole pressure (WBHP), gas-oil ratio, and water cut) of five production wells. Three scenarios are designed to separately demonstrate the competence of the modified IES algorithm by comparing the objective function reduction, history-matched production profile convergence, model parameters variance reduction, and the relative permeability and capillary pressure of each scenario. It has been found from the PUNQ-S3 model that the computational expenses can be reduced by 50% while comparing the modified and original IES algorithm. Also, the enlarged objective function reduction, improved history-matched production profile, and decreased model parameter variance have been achieved by using the modified IES algorithm, resulting in a further reduced deviation between the reference and the estimated relative permeability and capillary pressure in comparison to those obtained from the original IES algorithm. Consequently, the modified IES algorithm integrated with the recursive approach and normalization method has been substantiated to be robust and pragmatic for improving the performance of the IES algorithms in terms of reducing the computational expenses and improving the accuracy.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3