Weakly Nonlinear Stability of Thermosolutal Convection in an Oldroyd-B Fluid-Saturated Anisotropic Porous Layer Using a Local Thermal Nonequilibrium Model

Author:

Kumar C. Hemanth1,Shankar B. M.2,Shivakumara I. S.3

Affiliation:

1. Department of Mathematics, BMS College of Engineering, Bengaluru 560 019, India

2. Department of Mathematics, PES University, Bengaluru 560 085, India

3. Department of Mathematics, Bangalore University, Bengaluru 560 056, India

Abstract

Abstract The two-temperature model of local thermal nonequilibrium (LTNE) is utilized to investigate a weakly nonlinear stability of thermosolutal convection in an Oldroyd-B fluid-saturated anisotropic porous layer. The anisotropies in permeability, thermal conductivities of the porous medium, and solutal diffusivity are accounted for by second-order tensors with their principal directions coinciding with the horizontal and vertical coordinate axes. A modified Darcy–Oldroyd model is employed to describe the flow in a porous medium bounded by impermeable plane walls with uniform and unequal temperatures as well as solute concentrations. The cubic-Landau equations are derived in the neighborhood of stationary and oscillatory onset using a modified perturbation approach and the stability of bifurcating equilibrium solutions is discussed. The advantage is taken to present some additional results on the linear instability aspects as well. It is manifested that the solutal anisotropy parameter also plays a decisive role on the instability characteristics of the system. It is found that the stationary bifurcating solution transforms from supercritical to subcritical while the oscillatory bifurcating solution transforms from supercritical to subcritical and revert to supercritical. The Nusselt and Sherwood numbers are used to examine the influence of LTNE and viscoelastic parameters on heat and mass transfer, respectively. The results of Maxwell fluid are outlined as a particular case from this study.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3