Development of an Inverse Approach for the Characterization of In Vivo Mechanical Properties of the Lower Limb Muscles

Author:

Affagard Jean-Sébastien12,Bensamoun Sabine F.3,Feissel Pierre4

Affiliation:

1. Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7338, Centre de recherches de Royallieu, Université de Technologie de Compiègne (UTC), Rue Roger Couttolenc CS 60319, Compiègne 60203, France;

2. Laboratoire Roberval, UMR CNRS 7337, Centre de recherches de Royallieu, Université de Technologie de Compiègne (UTC), Rue Roger Couttolenc CS 60319, Compiègne 60203, France

3. Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7338, Centre de recherches de Royallieu, Université de Technologie de Compiègne (UTC), Rue Roger Couttolenc CS 60319, Compiègne 60203, France e-mail:

4. Laboratoire Roberval, UMR CNRS 7337, Centre de recherches de Royallieu, Université de Technologie de Compiègne (UTC), Rue Roger Couttolenc CS 60319, Compiègne 60203, France e-mail:

Abstract

The purpose of this study was to develop an inverse method, coupling imaging techniques with numerical methods, to identify the muscle mechanical behavior. A finite element model updating (FEMU) was developed in three main interdependent steps. First, a 2D FE modeling, parameterized by a Neo-Hookean behavior (C10 and D), was developed from a segmented thigh muscle 1.5T MRI (magnetic resonance imaging). Thus, a displacement field was simulated for different static loadings (contention, compression, and indentation). Subsequently, the optimal mechanical test was determined from a sensitivity analysis. Second, ultrasound parameters (gain, dynamic, and frequency) were optimized on the thigh muscles in order to apply the digital image correlation (DIC), allowing the measurement of an experimental displacement field. Third, an inverse method was developed to identify the Neo-Hookean parameters (C10 and D) by performing a minimization of the distance between the simulated and measured displacement fields. To replace the experimental data and to quantify the identification error, a numerical example was developed. The result of the sensitivity analysis showed that the compression test was more adapted to identify the Neo-Hookean parameters. Ultrasound images were recorded with a frequency, gain, and dynamic of 9 MHz, 34 dB, 42 dB, respectively. In addition, the experimental noise on displacement field measurement was estimated to be 0.2 mm. The identification performed on the numerical example revealed a low error for the C10 (<3%) and D (<7%) parameters with the experimental noise. This methodology could have an impact in the scientific and medical fields. A better knowledge of the muscle behavior will help to follow treatment and to ensure accurate medical procedures during the use of robotic devices.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference30 articles.

1. Compression élastique externe et fonction musculaire chez l'homme;Sci. Sports,2007

2. Patient-Specific Modeling of Leg Compression in the Treatment of Venous Deficiency,2012

3. Mixed Experimental and Numerical Approach for Characterizing the Biomechanical Response of the Human Leg Under Elastic Compression;ASME J. Biomech. Eng.,2010

4. Identification of the Material Parameters of Soft Tissues in the Compressed Leg;Comput. Methods Biomech. Biomed. Eng.,2012

5. Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping;IEEE Trans. Ultrason. Ferroelectri. Freq. Control,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3