A Comparison of Equality Constraint Formulations for Concurrent Design Optimization

Author:

Tappeta Ravindra V.1,Renaud John E.1

Affiliation:

1. University of Notre Dame

Abstract

Abstract This paper investigates a concurrent approach for design optimization. The method of Simultaneous ANalysis and Design (SAND) is tested in application to three Multidisciplinary Design Optimization (MDO) test problems. A Generalized Reduced Gradient (GRG) optimizer and a Sequential Quadratic Programming (SQP) optimizer are compared with respect to their efficacy in handling three different forms of equality constraints referred to as compatibility constraints in the SAND based optimization procedure. Results highlight the need for both strategies in application of SAND based design to different engineering test problems. More importantly significant savings in the number of analyses required for design optimization are observed when using the SAND approach of concurrent design. SAND based design delivers on the promise of concurrent engineering, namely to develop optimal designs, working concurrently, while reducing design cycle time.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AGENT based structural static and dynamic collaborative optimization;Science in China Series E: Technological Sciences;2001-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3