Grid Convergence Properties of Wall-Modeled Large Eddy Simulations in the Asymptotic Regime

Author:

Yang Xiang I. A.1ORCID,Abkar Mahdi2ORCID,Park George3ORCID

Affiliation:

1. Mechanical Engineering, Pennsylvania State University , University Park, PA 16802

2. Department of Mechanical and Production Engineering, Aarhus University, Aarhus 8200, Denmark

3. Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104

Abstract

Abstract This study explores the grid convergence properties of wall-modeled large eddy simulation (WMLES) solutions as the large eddy simulation (LES) grid approaches the direct numerical simulation (DNS) grid. This aspect of WMLES is fundamental but has not been previously investigated or documented. We investigate two types of grid refinements: one where the LES/wall-model matching location is fixed at an off-wall grid point, and another where the matching location is fixed at a specific distance from the wall. In both cases, we refine the LES grid simultaneously in all three Cartesian directions, with grid resolution ranging from typical LES resolution to typical DNS resolution. Our focus is on examining the mean flow and turbulent kinetic energy (TKE) as the grid refines. While the turbulence statistics consistently converge toward the DNS solution, we observe nonmonotonic convergence in the mean flow statistics. We show that improving the grid resolution does not necessarily enhance the accuracy of the mean flow predictions. Specifically, we identify a negative log layer mismatch when the LES/wall-model matching location lies below the logarithmic layer, regardless of grid resolution and matching location. Finally, we demonstrate that the nonmonotonic convergence of the mean flow can lead to misleading conclusions from grid convergence studies of WMLES.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3