Affiliation:
1. Department of Aerospace Engineering and Applied Mathematics, University of Cincinnati, Cincinnati, Ohio
Abstract
Trajectories of small coal ash particles encountered in coal-fired gas turbines are calculated with an improved computer analysis currently under development. The analysis uses an improved numerical grid and mathematical spline-fitting techniques to account for three-dimensional gradients in the flow field and blade geometry. The greater accuracy thus achieved in flow field definition improves the trajectory calculations over previous two-dimensional models by allowing the small particles to react to radial variations in the flow properties. A greater accuracy thus achieved in the geometry definition permits particle rebounding in a plane perpendicular to the blade and flow path surfaces rather than in a two-dimensional plane. The improved method also accounts for radial variations in airfoil chord, stagger, and blade thickness when computing particle impact at a blade location.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献