Affiliation:
1. Department of Mechanical Engineering, Columbia University, New York, NY 10027
2. Department of Mechanical and Aerospace Engineering, University of Delaware, Newark, DE 19716
Abstract
Numerical studies are reported for steady, mixed convection in two-dimensional horizontal porous layers with localized heating from below. The interaction mechanism between the forced flow and the buoyant effects is examined for wide ranges of Rayleigh number Ra* and Peclet number Pe*. The external flow significantly perturbs the buoyancy-induced temperature and flow fields when Pe* is increased beyond unity. For a fixed Peclet number, an increase in Rayleigh number produces multicellular recirculating flows in a domain close to the heat source. This enhances heat transfer by free convection. However, for a fixed Ra*, an increase in forced flow or Peclet number does not necessarily increase the heat transfer rate. Hence, there exists a critical Peclet number as a function of Ra* for which the overall Nusselt number is minimum. The heat transfer is, generally, dominated by the buoyant flows for Pe* < 1 whereas the contribution of free convection is small for Pe* > 10 when Ra* ≤ 10.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献