Improved Layouts and Performance of Single- and Double-Flash Steam Geothermal Plants Generated by the Heatsep Method

Author:

Manente Giovanni1,Lazzaretto Andrea1

Affiliation:

1. Department of Industrial Engineering, University of Padova, Padova 35131, Italy

Abstract

Abstract Single- and double-flash steam power plants are commonly used in the utilization of high enthalpy liquid-dominated geothermal resources. In these plants, the expansion line in the wet steam region results in significant penalties of turbine isentropic efficiency and power output. Accordingly, the “self-superheating” and “interstage heating” plant modifications have been recently proposed in the literature, where the saturated steam at turbine inlet is superheated by using the heat of the geothermal liquid, which is cooled before the flashing process. In this study, the aforementioned and additional new flash steam plant layouts are generated by using a systematic method, called Heatsep, for the optimum design of energy systems. All the thermal connections between consecutive basic plant components are “cut” to let these temperatures vary and in turn generate additional hot and cold streams, which are combined to enhance the overall performance of the system. It is demonstrated that the single-flash plant with self-superheating is simply obtained by cutting two out of five thermal links. In the double-flash plant, the higher number of components allows for a higher number of thermal cuts and heat integration options. Unlike the existing literature, the maximum power output is not constrained by a predefined heat transfer network. The optimization results show that the maximum power output of the novel single- and double-flash steam plants exceeds by 5.5–9.2% and 3.9–7.7% the maximum attainable by the corresponding traditional plants without internal heat integration.

Funder

ENEL Green Power S.p.A.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference22 articles.

1. Geothermal Power Generation in the World 2010–2014 Update Report;Bertani;Geothermics,2016

2. Miravalles Unit 3 Single-Flash Plant, Guanacaste, Costa Rica: Technical and Environmental Performance Assessment;Moya,2010

3. Performance Analysis and Optimization of Double-Flash Geothermal Power Plants;Dagdas;J. Energ. Resour.,2007

4. Krafla Geothermal System, Northeastern Iceland: Performance Assessment of Alternative Plant Configurations;Langella;Geothermics,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3