The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling

Author:

Zhou Chao1,Hodson Howard1

Affiliation:

1. Whittle Laboratory, Department of Engineering, University of Cambridge, CB3 0DY Cambridge, UK

Abstract

Experimental, analytical, and numerical methods have been employed to study the aerodynamic performance of four different cooled tips with coolant mass ratios between 0% and 1.2% at three tip gaps of 1%, 1.6%, and 2.2% of the chord. The four cooled tips are two flat tips with different coolant holes, a cooled suction side squealer tip and a cooled cavity tip. Each tip has ten coolant holes with the same diameter. The uncooled cavity tip produces the smallest loss among all uncooled tips. On the cooled flat tip, the coolant is injected normally into the tip gap and mixes directly with flow inside the tip gap. The momentum exchange between the coolant and the flow that enters the tip gap creates significant blockage. As the coolant mass flow ratio increases, the tip leakage loss of the cooled flat tip first decreases and then increases. For the cooled cavity tip, the blockage effect of the coolant is not as big as that on the cooled flat tip. This is because after the coolant exits the coolant holes, it mixes with flow in the cavity first and then mixes with tip flow in the tip gap. The tip leakage loss of the cooled cavity tip increases as the coolant mass flow ratio increase. As a result, at a tip gap of 1.6% of the chord, the cooled cavity tip gives the lowest loss. At the smallest tip gap of 1% of the chord, the cooled flat tip produces less loss than the cooled cavity tip when the coolant mass flow ratios larger than 0.23%. This is because with the same coolant mass flow ratio, a proportionally larger blockage is created at the smallest tip gap. At the largest tip gap of 2.2% of the chord, the cavity tip achieves the best aerodynamic performance. This is because the effect of the coolant is reduced and the benefits of the cavity tip geometry dominate. At a coolant mass flow ratio of 0.55%, the cooled flat tips produce a lower loss than the cavity tip at tip gaps less than 1.3% of the chord. The cooled cavity tip produces the least loss for tip gaps larger than 1.3% of the chord. The cooled suction side squealer has the worst aerodynamic performance for all tip gaps studied.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3