Modeling of Line Contacts With Degrading Lubricant

Author:

Kudish Ilya I.1,Airapetyan Ruben G.1

Affiliation:

1. Kettering University, Flint, MI 48504

Abstract

A plane isothermal elastohydrodynamic problem for a lubricated line contact is studied. The lubricant represented by a base stock with some polymer additive undergoes stress-induced degradation due to scission of polymer additive molecules. The polymer molecules have linear structure. The degradation process of a polymer additive dissolved in a lubricant while the lubricant passes through the contact is described by a kinetic equation. The kinetic equation is solved along the lubricant flow streamlines. The solution of the kinetic equation predicts the density of the probabilistic distribution of the polymer molecular weight versus polymer molecule chain length. The changes in the distribution of polymer molecules affect local lubricant properties. In particular, the lubricant viscosity changes as polymer molecules undergo scission. These irreversible changes in the lubricant viscosity alter virtually all parameters of the lubricated contact such as film thickness, frictional stresses and pressure. As a result of the polymer additive degradation the lubricant experiences a significant viscosity loss. The viscosity loss (up to 60 percent), in turn, leads to a noticeable reduction in the lubrication film thickness (up to 12 percent) and frictional stresses applied to contact surfaces in comparison with the case of a nondegrading lubricant. Moreover, the pressure distribution in degrading lubricants exhibits extremely sharp spikes of about 2.15 to 2.82 (depending on the slide-to-roll ratio) times greater than the maximum Hertzian pressure. That may lead to noticeable variations in fatigue life of the contact surfaces.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Lubricant Degradation on Contact Fatigue;Tribology Transactions;2005-01

2. Lubricants With Non-Newtonian Rheology and Their Degradation in Line Contacts;Journal of Tribology;2004-01-01

3. Modelling of Lubricant Degradation and Elastohydrodynamic Lubrication;IUTAM Symposium on Elastohydrodynamics and Micro-elastohydrodynamics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3