Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics

Author:

Zhou Chaochao1,Willing Ryan2

Affiliation:

1. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000

2. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000; Department of Mechanical and Materials Engineering, Western University, Thompson Engineering Building, Room TEB 363, London, ON N6A 5B9, Canada

Abstract

Abstract Total disk arthroplasty (TDA) using an artificial disk (AD) is an attractive surgical technique for the treatment of spinal disorders, since it can maintain or restore spinal motion (unlike interbody fusion). However, adverse surgical outcomes of contemporary lumbar TDAs have been reported. We previously proposed a new mobile-bearing AD design concept featuring a biconcave ultrahigh-molecular-weight polyethylene (UHMWPE) mobile core. The objective of this study was to develop an artificial neural network (NN) based multiobjective optimization framework to refine the biconcave-core AD design considering multiple TDA performance metrics, simultaneously. We hypothesized that there is a tradeoff relationship between the performance metrics in terms of range of motion (ROM), facet joint force (FJF), and polyethylene contact pressure (PCP). By searching the resulting three-dimensional (3D) Pareto frontier after multiobjective optimization, it was found that there was a “best-tradeoff” AD design, which could balance all the three metrics, without excessively sacrificing each metric. However, for each single-objective optimum AD design, only one metric was optimal, and distinct sacrifices were observed in the other two metrics. For a commercially available biconvex-core AD design, the metrics were even worse than the poorest outcomes of the single-objective optimum AD designs. Therefore, multiobjective design optimization could be useful for achieving native lumbar segment biomechanics and minimal PCPs, as well as for improving the existing lumbar motion-preserving surgical treatments.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3