A Fourier Approach to Kinematic Acquisition of Geometric Constraints of Planar Motion for Practical Mechanism Design

Author:

Li Xiangyun1,Lv Hao1,Zhao Ping2,Lu Qi3

Affiliation:

1. Sichuan University West China Biomedical Big Data Center, West China Hospital, , Chengdu 610041 , China

2. School of Mechanical Engineering, Hefei University of Technology , Hefei 230009 , China

3. Sichuan University-Pittsburgh Institute, Sichuan University , Chengdu 610207 , China

Abstract

Abstract This paper studies the problem of geometric constraint acquisition from a given planar motion task using Fourier descriptor. In the previous work, we established a computational geometric framework for simultaneous type and dimensional synthesis of planar dyads by extracting line or circle constraints from a sequence of task poses. In cases where six or more poses are specified as the desired movement, the resulting optimal constraint may be nowhere in the accuracy neighborhood to be viewed as an approximate line or circle. The approach herein enhances the framework by exploiting Fourier transform to capture the feasible constraint of a continuous motion with a large set of poses. Theoretically, any arbitrary point trajectory on the task motion can be transformed to an array of harmonics and used as a constraint; on a practical level, only those with low number of harmonics could allow accurate realization by simple planar mechanisms suitable for real applications, e.g., four- and six-bar linkages, cams, and coupled serial chains. Therefore, the practical goal is to find the simple Fourier constraint defined with the least number of harmonics. Two examples of designing assistive mechanisms for upper- and lower-limb rehabilitation are provided in the end to illustrate the effectiveness of our approach.

Funder

Department of Science and Technology of Sichuan Province

National Natural Science Foundation of China

Sichuan University

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3