Affiliation:
1. University of California San Diego Department of Structural Engineering, , San Diego, CA 92093
2. University of Texas Austin Walker Department of Mechanical Engineering, , Austin, TX 78712
Abstract
Abstract
This work presents a method for generating concept designs for coupled multiphysics problems by employing generative adversarial networks (GANs). Since the optimal designs of multiphysics problems often contain a combination of features that can be found in the single-physics solutions, we investigate the feasibility of learning the optimal design from the single-physics solutions, to produce concept designs for problems that are governed by a combination of these single physics. We employ GANs to produce optimal topologies similar to the results of level set topology optimization (LSTO) by finding a mapping between the sensitivity fields of specific boundary conditions, and the optimal topologies. To find this mapping, we perform image-to-image translation GAN training with a combination of structural, heat conduction, and a relatively smaller number of coupled structural and heat conduction data. We observe that the predicted topologies using GAN for coupled multiphysics problems are very similar to those generated by level set topology optimization, which can then be used as the concept designs for further detailed design. We show that using a combination of multiple single-physics data in the training improves the prediction of GAN for multiphysics problems. We provide several examples to demonstrate this.
Funder
Defense Sciences Office, DARPA
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献