An Efficient Iso-Scallop Toolpath Planning Strategy Using Voxel-Based Computer Aided Design Model

Author:

Kukreja Aman1,Pande S. S.1

Affiliation:

1. Indian Institute of Technology, Bombay Computer-Aided Manufacturing Laboratory, Mechanical Engineering Department, , Mumbai 400076, Maharashtra , India

Abstract

Abstract The primary objective of an efficient computer numerical control (CNC) finishing toolpath strategy is to reduce the machining time and maintain desired surface finish (scallop). Among traditional toolpath planning strategies, iso-scallop gives the shortest toolpath while achieving a uniform surface finish. However, it is computationally complex, time-consuming, and sometimes produces topological inconsistencies in regions of high curvature/gradient. This paper presents a novel voxel-based toolpath planning algorithm to address these issues for the three-axis milling of freeform surfaces. Two strategies have been proposed, namely, iso-scallop and hybrid iso-scallop. Gouge-free cutter location (CL) points are initially computed from the voxel-based model, followed by iso-scallop toolpath generation using a binary search algorithm. The hybrid strategy involves region segmentation to generate an adaptive toolpath in high curvature/gradients regions. The overlapping toolpath is stitched and refined to create an efficient iso-scallop-based tool path. The developed system was extensively tested for complex freeform surface parts and was found to be computationally efficient, robust, and accurate in generating a finishing toolpath.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tool path planning of ball-end milling of free-form surfaces as a search algorithm;Acta Technica Jaurinensis;2024-03-14

2. Deep Learning in Computational Design Synthesis: A Comprehensive Review;Journal of Computing and Information Science in Engineering;2024-01-08

3. Vector Field-Based Volume Peeling for Multi-Axis Machining;Journal of Computing and Information Science in Engineering;2023-12-15

4. Optimal toolpath planning strategy prediction using machine learning technique;Engineering Applications of Artificial Intelligence;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3