The Hydrodynamic Drag on a Small Sphere in an Ionized Gas

Author:

Seymour E. V.1

Affiliation:

1. Shell Pipe Line Corporation Research and Development Laboratory, Houston, Texas

Abstract

A theoretical and experimental study was made of the hydrodynamic drag on a small sphere moving relative to a plasma in local thermodynamic equilibrium. The results have application to velocity measurement in ionized gases using the technique of injecting small particles and following their motion as a function of time. The previously available sphere drag results for fluids with properties which vary linearly with temperature are shown to be in error by as much as 40 percent for an argon plasma at 13,000 deg K, for example, because large temperature gradients occur in the vicinity of the sphere where fluid properties vary nonlinearly with temperature. A new drag calculation for a sphere Reynolds number of zero has been made for an argon plasma taking into account nonlinear variations of transport properties with temperature. Sphere deflection measurements in an argon plasma have been made at Reynolds numbers between 0.3 and 1.5. The interpretation of these measurements in terms of sphere drag is subject to confirmation of the plasma transport properties used in the data reduction, but the difference between the measured drag and the drag calculated for zero Reynolds number appears to be approximately the same as in the classical case for invariant fluid properties.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An experimental study of the drag force on a sphere exposed to an argon thermal plasma flow;Plasma Chemistry and Plasma Processing;1991-03

2. Melting of powder grains in a plasma flame;International Journal of Heat and Mass Transfer;1979-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3