Elastic Anisotropy of Directionally Solidified Superalloy

Author:

Hasebe Tadashi1,Sakane Masao2,Ohnami Masateru2

Affiliation:

1. Faculty of Engineering, Kyoto University, Honmachi Kyoto, 606, Japan

2. Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, Kyoto, 603, Japan

Abstract

This paper describes the elastic compliance matrix and Young’s modulus of directionally solidified (DS) plates which are composed of five columnar grains. Threedimensional finite element method analyses (FEM), taking account of the anisotropy of a crystal, were made to determine the elastic compliance matrix of the DS plate. The elastic compliance matrix calculated in the FEM analysis was reduced to an orthotropic matrix after giving an appropriate rotation of coordinates. The elastic compliance matrix calculated by Reuss and Voigt averages were compared with the FEM results. The two averages precisely estimated the FEM results but the Reuss model had a better accuracy. The Young’s modulus in any direction was discussed in both the coaxis and non-coaxis models.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3