NPSHr Optimization of Axial-Flow Pumps

Author:

Li Wen-Guang1

Affiliation:

1. Department of Fluid Machinery, Lanzhou University of Technology, 287 Langongping Road, 730050 Lanzhou, P.R.C.

Abstract

The two-step method for optimizing net positive suction head required (NPSHr) of axial-flow pumps is proposed in this paper. First, the NPSHr at the impeller tip is optimized with impeller diameter based on experimental data of 2D cascades in available wind tunnels. Then, it is optimized again with the velocity moment at the impeller outlet, which is expressed in terms of two parameters. The blade geometry is generated and flow details are clarified by using the radial equilibrium equation, actuator disk theory, and 2D vortex element method in the optimizing process. The NPSHr response surface has been established in terms of these two parameters. The results illustrate that the second optimization allows NPSHr to be reduced by 37.5% compared to the first optimization. Therefore, this two-step method is effective and expects to be applied in the axial-flow pump impeller blade design. The simulations of 3D turbulent flow with various cavitation models and related confirming experiments are going to be done in the axial-flow impellers designed with this method.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Studies on Certain Aspects of the Design of Axial and Mixed Flow Impellers;Govida Rao

2. A Simple Method for the Selection of Axial Fan Blade Profiles;Hay;Proc. Inst. Mech. Eng.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3