Convective Instability in a Melt Layer Heated From Below

Author:

Sparrow E. M.1,Lee L.1,Shamsundar N.1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

Abstract

Consideration is given to the onset of convective motions in a horizontal melt layer created by solid-to-liquid phase change. The melt layer is heated at its lower bounding surface either due to convective transfer from an adjacent fluid medium or to a step change in wall temperature. The analysis is carried out for liquid melts whose densities decrease with increasing temperature. Linear stability theory is employed to determine the conditions marking the onset of motion. The results of the analysis are expressed in terms of two Rayleigh numbers. One of these, the internal Rayleigh number, is based on the instantaneous thickness and instantaneous temperature difference across the layer. The other, the external Rayleigh number, is more convenient to use in applications problems since it contains quantities which are constant and a priori prescribable. For a melting problem where the external Rayleigh number is large, instability occurs soon after the start of heating. At smaller external Rayleigh numbers, the duration time of the regime of no motion increases markedly. At large times, the stability results for convective heating coincide with those for stepped wall temperature. In addition to the results for the stability problem, results for conduction phase change (in the absence of motion) are also presented for the surface convection boundary condition.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3