Modeling Alkaline Liquid Metal (Na) Evaporating Thin Films Using Both Retarded Dispersion and Electronic Force Components

Author:

Tipton Joseph B.1,Kihm Kenneth D.1,Pratt David M.2

Affiliation:

1. Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996-2210

2. Structures Division, Air Vehicles Directorate, United States Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7542

Abstract

A new thin-film evaporation model is presented that captures the unsimplified dispersion force along with an electronic disjoining pressure component that is unique to liquid metals. The resulting nonlinear fourth-order ordinary differential equation (ODE) is solved using implicit orthogonal collocation along with the Levenberg–Marquardt method. The electronic component of the disjoining pressure should be considered when modeling liquid metal extended meniscus evaporation for a wide range of work function boundary values, which represent physical properties of different liquid metals. For liquid sodium, as an example test material, variation in the work function produces order-of-magnitude differences in the film thickness and evaporation profile.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capillary evaporating film model for a screen-wick heat pipe;Applied Thermal Engineering;2023-05

2. Capillary Evaporating Film Model for a Screen-Wick Heat Pipe;SSRN Electronic Journal;2022

3. Micro-scale heat transfer modelling of the contact line region of a boiling-sodium bubble;International Journal of Heat and Mass Transfer;2020-10

4. A sodium boiler and phase-change energy storage system;SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems;2019

5. Effect of disjoining pressure (Π) on multi-scale modeling for evaporative liquid metal (Na) capillary;International Journal of Heat and Mass Transfer;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3