Gas Heat Conduction in Evacuated Flat-Plate Solar Collectors: Analysis and Reduction

Author:

Beikircher T.1,Benz N.2,Spirkl W.3

Affiliation:

1. Sektion Physik der Ludwig-Maximilians—Universita¨t Mu¨nchen, Amalienstr. 54, D-80799 Mu¨nchen, Germany

2. Bayerisches Zentrum fu¨r angewandte Energieforschung e.V. (ZAE Bayern) Domagkstr. 11, D-80807, Mu¨nchen, Germany

3. Sektion Physik der Ludwig-Maximilians—Universita¨t Mu¨nchen, Amalienstr, 54, D-80799 Mu¨nchen, Germany

Abstract

In stationary heat-loss experiments, the thermal losses by gas conduction of an evacuated flat-plate solar collector (EFPC) were experimentally determined for different values of interior gas pressure. The experiments were carried out with air and argon in the pressure range from 10−3 to 104 Pa. For air, loss reduction sets in at 100 Pa, whereas at 0.1 Pa heat conduction is almost completely suppressed. Using argon as filling gas, gas conduction is reduced by 30 percent (compared to air) at moderate interior pressures of 1000 Pa. With decreasing pressure this reduction is even greater (50 percent reduction at 10 Pa). A theory was developed to calculate thermal losses by gas conduction in an EFPC: Fourier’s stationary heat conduction equation was solved numerically (method of finite differences) for the special geometry of the collector. From kinetic gas theory a formula for the pressure dependency of the thermal conductivity was derived covering the entire pressure range. The theory has been validated experimentally for the gases air and argon. Calculations for krypton and xenon show a possible gas conduction loss reduction of 60–70 percent and 75–85 percent (with respect to air, depending on gas pressure), corresponding to a reduction of the overall collector losses of up to 40 percent.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference17 articles.

1. Eaton C. B. , and BlumH. A., 1975, “The use of moderate vacuum environments as a means of increasing the collection efficiencies and operating temperatures of flat-plate solar collectors,” Solar Energy, Vol. 17, pp. 151–158.

2. Eucken, A., 1938, Lehrbuch der chemischen Physik, Akademische Verlagsgesellschaft, Leipzig.

3. Fastowski, W. G., Petrowski, J. W., and Rowinsky, A. E., 1970, Kryotechnik, Akademie-Verlag, Berlin.

4. Frei, U. W., 1993, “Leistungsdaten thermischer Sonnenkollektoren,” Technical Report, Solarenergie Pru¨f- und Forschungsstelle, Technikum Rapperswil, Schweizerisches Bundesamt fu¨r Energiewirtschaft BEW.

5. Garg, H. P., 1987, Advances in Solar Energy Technology, Volume 2, D. Reidel, Dordrecht, Holland.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3