Transfer Learning for Detection of Combustion Instability Via Symbolic Time-Series Analysis

Author:

Bhattacharya Chandrachur1,Ray Asok2

Affiliation:

1. Departments of Mechanical and Electrical Engineering, Pennsylvania State University, University Park, PA 16802

2. Departments of Mechanical Engineering and Mathematics, Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired from a source domain, is “transferred” to perform a task in a target domain that has (to some extent) a similar setting. The underlying concept does not require the ML method to analyze a new problem from the beginning, and thereby both the learning time and the amount of required target-domain data are reduced for training. An example is the occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure oscillations, possibly leading to flame extinction as well as undesirable vibrations in the mechanical structures. In this situation, it is difficult to collect useful data from industrial combustion systems, due to the transient nature of TAI phenomena. A feasible solution is the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phenomena. This paper proposes symbolic time-series analysis (STSA)-based TL, where the key idea is to develop a capability of discrimination between stable and unstable operations of a combustor, based on the time-series of pressure oscillations from a data source that contains sufficient information, even if it is not the target regime, and then transfer the learnt models to the target regime. The proposed STSA-based pattern classifier is trained on a previously validated numerical model of a Rijke-tube apparatus. The knowledge of this trained classifier is transferred to classify similar operational regimes in: (i) an experimental Rijke-tube apparatus and (ii) an experimental combustion system apparatus. Results of the proposed TL have been validated by comparison with those of two shallow neural networks (NNs)-based TL and another NN having an additional long short-term memory (LSTM) layer, which serve as benchmarks, in terms of classification accuracy and computational complexity.

Funder

Air Force Office of Scientific Research

Army Research Office

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference40 articles.

1. A Survey on Transfer Learning;IEEE Trans. Knowl. Data Eng.,2010

2. A Comprehensive Survey on Transfer Learning;Proc. IEEE,2020

3. Transfusion: Understanding Transfer Learning for Medical Imaging,2019

4. Transfer Learning for Drug Discovery;J. Med. Chem.,2020

5. Transfer Learning in Natural Language Processing,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3