Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques

Author:

Gamal Hany1,Alsaihati Ahmed1,Elkatatny Salaheldin1,Haidary Saleh2,Abdulraheem Abdulazeez1

Affiliation:

1. Department of Petroleum Engineering, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. EXPEC ARC, Saudi Aramco, Dhahran 31311, Saudi Arabia

Abstract

Abstract The rock unconfined compressive strength (UCS) is one of the key parameters for geomechanical and reservoir modeling in the petroleum industry. Obtaining the UCS by conventional methods such as experimental work or empirical correlation from logging data are time consuming and highly cost. To overcome these drawbacks, this paper utilized the help of artificial intelligence (AI) to predict (in a real-time) the rock strength from the drilling parameters using two AI tools. Random forest (RF) based on principal component analysis (PCA), and functional network (FN) techniques were employed to build two UCS prediction models based on the drilling data such as weight on bit (WOB), drill string rotating speed (RS), drilling torque (T), stand-pipe pressure (SPP), mud pumping rate (Q), and the rate of penetration (ROP). The models were built using 2333 data points from well (A) with 70:30 training to testing ratio. The models were validated using unseen dataset (1300 data points) of well (B) which is located in the same field and drilled across the same complex lithology. The results of the PCA-based RF model outperformed the FN in terms of correlation coefficient (R) and average absolute percentage error (AAPE). The overall accuracy for PCA-based RF was R of 0.99 and AAPE of 4.3%, and for FN yielded R of 0.97 and AAPE of 8.5%. The validation results showed that R was 0.99 for RF and 0.96 for FN, while the AAPE was 4% and 7.9% for RF and FN models, respectively. The developed PCA-based RF and FN models provide an accurate UCS estimation in real-time from the drilling data, saving time and cost, and enhancing the well stability by generating UCS log from the rig drilling data.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference52 articles.

1. Uniaxial Compressive Strength and Point Load Strength of Rocks;Chau;Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1996

2. Confined Compressive Strength Model of Rock for Drilling Optimization;Shi;Petroleum,2015

3. Prediction of Rock Mechanical Parameters for Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques;Abdulraheem,2009

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3