Closed-Form Analytical Solutions for Laminar Natural Convection on Horizontal Plates

Author:

Guha Abhijit1,Samanta Subho2

Affiliation:

1. Professor e-mail:

2. Research Student Mechanical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Abstract

A boundary layer based integral analysis has been performed to investigate laminar natural convection heat transfer characteristics for fluids with arbitrary Prandtl number over a semi-infinite horizontal plate subjected either to a variable wall temperature or variable heat flux. The wall temperature is assumed to vary in the form T¯w(x¯)-T¯∞=ax¯n whereas the heat flux is assumed to vary according to qw(x¯)=bx¯m. Analytical closed-form solutions for local and average Nusselt number valid for arbitrary values of Prandtl number and nonuniform heating conditions are mathematically derived here. The effects of various values of Prandtl number and the index n or m on the heat transfer coefficients are presented. The results of the integral analysis compare well with that of previously published similarity theory, numerical computations and experiments. A study is presented on how the choice for velocity and temperature profiles affects the results of the integral theory. The theory has been generalized for arbitrary orders of the polynomials representing the velocity and temperature profiles. The subtle role of Prandtl number in determining the relative thicknesses of the velocity and temperature boundary layers for natural convection is elucidated and contrasted with that in forced convection. It is found that, in natural convection, the two boundary layers are of comparable thickness if Pr ≤ 1 or Pr ≈ 1. It is only when the Prandtl number is large (Pr > 1) that the velocity boundary layer is thicker than the thermal boundary layer.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3